博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Some remarks on definition 1.1.1,A field guide to algebra
阅读量:7045 次
发布时间:2019-06-28

本文共 1453 字,大约阅读时间需要 4 分钟。

Definition 1.1.1.Let $\sum$ be a set of points in the plane $\mathbf{R}^2$. One says that a point $P$ is constructible with ruler and compass from $\sum$ if there is an integer $n$ and a sequence of points $(P_1,\cdots,P_n)$ with $P_n=P$ and such that for any $i\in\{1,\cdots,n\}$, denoting $\sum_i=\sum\bigcup\{P_1,\cdots,P_{i-1}\}$, one of the following holds:

1.there are four points $A, B, A'$ and $B'\in\sum_i$ such that $P_i$ is the intersection point of the two nonparallel lines $(AB)$ and $(A'B')$;

2.there are four points $A, B, C$, and $D\in\sum_i$ such that $P_i$ is one of the (at most) two intersection points of the line $(AB)$ and the circle with center $C$ and radius $CD$;

3.there are four points $O, M , O'$ and $M'\in\sum_i$ such that $P_i$ is one of the (at most) two intersection points of the distinct circles with, respectively, center $O$ and radius $OM$ ,and center $O$ radius $O'M'$ .

Remark 1. When $i<j$,$\sum_i\subseteq \sum_j$.Once $P$ is constructed,$P$ itself can be added into the "existing point set".And you start from this existing set,to creat even newer existing set.......

Remark 2.If $P$ is constructible from $\sum$,then you can get $P$ by using compass and ruler finitely many times,because $n$ is a natural number,a natural number is finite.

 

Remark 3.However,there is a  minor flaw in this definition:1.The definition fail the case of $i=1$.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/09/21/3827977.html

你可能感兴趣的文章
网易游戏QA工程师笔试回忆-2012.9【个人题解】
查看>>
详解 JSONP跨域请求的实现
查看>>
Oracle 修改文件所有者
查看>>
CocoaPods could not find compatible versions for pod "xxx": In snapshot (Podfile.lock):
查看>>
python发送邮件
查看>>
SilverLight 5 数据绑定
查看>>
ElasticSearch 结构化搜索全文
查看>>
带有进度条的圆周率计算
查看>>
bootstrap插件(对话框)bootbox参数和自定义弹出框宽度设置
查看>>
【转】我眼中的傅盛:为互联网混战而生
查看>>
OO第二次博客作业
查看>>
【DOM编程艺术】显示"缩略语列表"
查看>>
Java实现的断点续传功能
查看>>
用STL vector 来创建二维数组 zz
查看>>
关于Elastic Search (ES)集群的搭建
查看>>
Codeforces Round #116 (Div. 2, ACM-ICPC Rules) Letter(DP 枚举)
查看>>
IsolatedStorageSettings存储数据_____简单_____自定义(复杂)____数据
查看>>
《敏捷软件开发》第4章测试
查看>>
DOS windows 使用bat脚本获取 IP MAC 系统信息
查看>>
PHP给图片添加水印
查看>>